翻訳と辞書 |
Busemann's theorem : ウィキペディア英語版 | Busemann's theorem In mathematics, Busemann's theorem is a theorem in Euclidean geometry and geometric tomography. It was first proved by Herbert Busemann in 1949 and was motivated by his theory of area in Finsler spaces. ==Statement of the theorem==
Let ''K'' be a convex body in ''n''-dimensional Euclidean space R''n'' containing the origin in its interior. Let ''S'' be an (''n'' − 2)-dimensional linear subspace of R''n''. For each unit vector ''θ'' in ''S''⊥, the orthogonal complement of ''S'', let ''S''''θ'' denote the (''n'' − 1)-dimensional hyperplane containing ''θ'' and ''S''. Define ''r''(''θ'') to be the (''n'' − 1)-dimensional volume of ''K'' ∩ ''S''''θ''. Let ''C'' be the curve in ''S''⊥. Then ''C'' forms the boundary of a convex body in ''S''⊥.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Busemann's theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|